42 research outputs found

    Imaging the Thermalization of Hot Carriers After Thermionic Emission Over a Polytype Barrier

    Full text link
    The thermalization of non-equilibrium charge carriers is at the heart of thermoelectric energy conversion. In nanoscale systems, the equilibration length can be on the order of the system size, leading to a situation where thermoelectric effects need to be considered as spatially distributed, rather than localized at junctions. The energy exchange between charge carriers and phonons is of fundamental scientific and technological interest, but their assessment poses significant experimental challenges. We addressed these challenges by imaging the temperature change induced by Peltier effects in crystal phase engineered InAs nanowire (NW) devices. Using high-resolution scanning thermal microscopy (SThM), we have studied current-carrying InAs NWs, which feature a barrier segment of wurtzite (WZ) of varying length in a NW of otherwise zincblende (ZB) crystal phase. The energy barrier acts as a filter for electron transport around the Fermi energy, giving rise to a thermoelectric effect. We find that thermalization through electron-phonon heat exchange extends over the entire device. We analyze the temperature profile along a nanowire by comparing it to spatially dependent heat diffusion and electron thermalization models. We are able to extract the governing properties of the system, including the electron thermalization length of 223±9223 \pm 9\,nm, Peltier coefficient and Seebeck coefficient introduced by the barrier of 39±739 \pm 7\,mV and 89±2189 \pm 21\,μ\muV/K, respectively, and a thermal conductivity along the wire axis of 8.9±0.58.9 \pm 0.5\,W/m/K. Finally, we compare two ways to extract the elusive thermal boundary conductance between NW and underlying substrate

    Full thermoelectric characterization of a single molecule

    Get PDF
    Molecules are predicted to be chemically tunable towards high thermoelectric efficiencies and they could outperform existing materials in the field of energy conversion. However, their capabilities at the more technologically relevant temperature of 300 K are yet to be demonstrated. A possible reason could be the lack of a comprehensive technique able to measure the thermal and (thermo)electrical properties, including the role of phonon conduction. Here, by combining the break junction technique with a suspended heat-flux sensor, we measured the total thermal and electrical conductance of a single molecule, at room temperature, together with its Seebeck coefficient. We used this method to extract the figure of merit zT of a tailor-made oligo(phenyleneethynylene)-9,10-anthracenyl molecule with dihydrobenzo[b]thiophene anchoring groups (DHBT-OPE3-An), bridged between gold electrodes. The result is in excellent agreement with predictions from density functional theory and molecular dynamics. This work represents the first measurement, within the same setup, of experimental zT of a single molecule at room temperature and opens new opportunities for the screening of several possible molecules in the light of future thermoelectric applications. The protocol is verified using SAc-OPE3, for which individual measurements for its transport properties exist in the literature

    A survey of carbon nanotube interconnects for energy efficient integrated circuits

    Get PDF
    This article is a review of the state-of-art carbon nanotube interconnects for Silicon application with respect to the recent literature. Amongst all the research on carbon nanotube interconnects, those discussed here cover 1) challenges with current copper interconnects, 2) process & growth of carbon nanotube interconnects compatible with back-end-of-line integration, and 3) modeling and simulation for circuit-level benchmarking and performance prediction. The focus is on the evolution of carbon nanotube interconnects from the process, theoretical modeling, and experimental characterization to on-chip interconnect applications. We provide an overview of the current advancements on carbon nanotube interconnects and also regarding the prospects for designing energy efficient integrated circuits. Each selected category is presented in an accessible manner aiming to serve as a survey and informative cornerstone on carbon nanotube interconnects relevant to students and scientists belonging to a range of fields from physics, processing to circuit design

    Investigation of Pt-salt-doped-standalone-multiwall carbon nanotubes for on-chip interconnect applications

    Get PDF
    In this paper, we investigate, by combining electrical measurements with an atomistic-to-circuit modeling approach, the conductance of doped standalone multiwall carbon nanotubes (CNTs) as a viable candidate for the next generation of back-end-of-line interconnects. Ab initio simulations predict a doping-related shift of the Fermi level, which reduces shell chirality variability and improves electrical resistivity up to 90% by converting semiconducting shells to metallic. Electrical measurements of Pt-salt-doped CNTs provide up to 50% of resistance reduction, which is a milestone result for future CNT interconnect technology. Moreover, we find that defects and contacts introduce additional resistance, which limits the efficiency of doping, and are the primary cause for the mismatch between theoretical predictions and experimental measurements on doped CNTs

    Thermoelectric power factor enhancement by spin-polarized currents – a nanowire case study

    Get PDF
    In this work, thermoelectric (TE) measurements have been performed on the workhorses of today’s data storage devices, namely nanostructured materials exhibiting either the giant or the anisotropic magnetoresistance effect (GMR and AMR). In particular, the temperature-dependent (50 K - 300 K) and magnetic field-dependent (up to 1 T) TE power factor (PF) has been determined for several Co-Ni alloy nanowires with varying Co:Ni ratios as well as for Co-Ni/Cu multilayered nanowires with various Cu layer thicknesses, which were all synthesized via a template-assisted electrodeposition process. A systematic investigation of the resistivity, (rho), as well as the Seebeck coefficient, S, was performed for Co-Ni alloy nanowires exhibiting AMR and Co-Ni/Cu multilayered nanowires exhibiting GMR. At room temperature, measured values of TE PFs up to 3.6 mWK-2m-1 for AMR samples and 2.0 mWK-2m-1 for GMR nanowires were obtained. Furthermore, the TE PF was found to increase by up to 13.1 % for AMR Co-Ni alloy nanowires and by up to 52 % for GMR Co-Ni/Cu samples in an external applied magnetic field. According to these measurements, the magnetic nanowires exhibit TE PFs that are of the same order of magnitude as TE PFs of Bi-Sb-Se-Te based thermoelectric materials and, additionally, give the opportunity to adjust the TE power output to changing loads and hot spots through external magnetic fields

    Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP

    Full text link
    Weyl semimetals are materials where electrons behave effectively as a kind of massless relativistic particles known asWeyl fermions. These particles occur in two flavours, or chiralities, and are subject to quantum anomalies, the breaking of a conservation law by quantum fluctuations. For instance, the number of Weyl fermions of each chirality is not independently conserved in parallel electric and magnetic field, a phenomenon known as the chiral anomaly. In addition, an underlying curved spacetime provides a distinct contribution to a chiral imbalance, an effect known as the mixed axial-gravitational anomaly, which remains experimentally elusive. However, the presence of a mixed gauge-gravitational anomaly has recently been tied to thermoelectrical transport in a magnetic field, even in flat spacetime, opening the door to experimentally probe such type of anomalies in Weyl semimetals. Using a temperature gradient, we experimentally observe a positive longitudinal magnetothermoelectric conductance (PMTC) in the Weyl semimetal NbP for collinear temperature gradients and magnetic fields (DT || B) that vanishes in the ultra quantum limit. This observation is consistent with the presence of a mixed axial-gravitational anomaly. Our work provides clear experimental evidence for the existence of a mixed axial-gravitational anomaly of Weyl fermions, an outstanding theoretical concept that has so far eluded experimental detection

    Author Correction: Topological matter: Shrewd detectives find a dissipation channel

    No full text

    Nanoelectrical analysis of single molecules and atomic-scale materials at the solid/liquid interface

    Get PDF
    Evaluating the built-in functionality of nanomaterials under practical conditions is central for their proposed integration as active components in next-generation electronics. Low-dimensional materials from single atoms to molecules have been consistently resolved and manipulated under ultrahigh vacuum at low temperatures. At room temperature, atomic-scale imaging has also been performed by probing materials at the solid/liquid interface. We exploit this electrical interface to develop a robust electronic decoupling platform that provides precise information on molecular energy levels recorded using in situ scanning tunnelling microscopy/spectroscopy with high spatial and energy resolution in a high-density liquid environment. Our experimental findings, supported by ab initio electronic structure calculations and atomic-scale molecular dynamics simulations, reveal direct mapping of single-molecule structure and resonance states at the solid/liquid interface.We further extend this approach to resolve the electronic structure of graphene monolayers at atomic length scales under standard room-temperature operating conditions
    corecore